Definition Let μ_n, μ be Borel probability measures on $\mathcal{S} = C[0,1]$ (or $C[0,\infty)$ or \mathbb{R}^d or any completely and separably metrizable topological space). We say that $\mu_n \xrightarrow{d} \mu$ if any of the following equivalent conditions hold.

- (1) For any *bounded continuous* $L: S \to \mathbb{R}$, we have $\int L(s)d\mu_n(s) \to \int L(s)d\mu(s)$.
- (2) For any open $G \subset S$, we have $\limsup \mu_n(G) \le \mu(G)$.
- (3) For any closed $F \subset S$, we have $\liminf \mu_n(F) \ge \mu(F)$.
- (4) For any Borel subset $A \subset S$ with $\mu(\partial A) = 0$, we have $\mu_n(A) \rightarrow \mu(A)$.
- (5) For any $L: S \to \mathbb{R}$ for which $\mu\{s \in S : L \text{ is not continuous at } s\} = 0$, we have $\int L(s)d\mu_n(s) \to \int L(s)d\mu(s)$.

The main ingredient in proving these equivalences is the *regularity* of Borel measures on such spaces. Regularity means $\mu(A) = \inf{\{\mu(G) : \text{ open } G \supseteq A\}} = \sup{\{\mu(F) : \text{ closed } F \subseteq A\}}$ for any Borel set *A*. A nice 'probabilistic' way of checking weak convergence (and one that we shall use) is the following.

Proposition Suppose we can construct a probability space (Ω, \mathcal{F}, P) and \mathcal{S} -valued random variables X_n having distribution μ_n and Y_n having distribution μ for each n (that is $PX_n^{-1} = \mu_n$ and $PY_n^{-1} = \mu$ for all n) and such that $X_n - Y_n \xrightarrow{P} 0$. Then, $\mu_n \xrightarrow{d} \mu$. **Proof** Let $L : \mathcal{S} \to \mathbb{R}$ be a bounded continuous function. Then, $\int L(s)d\mu_n(s) - \int L(s)d\mu(s) = \mathbb{E}[L(X_n) - L(Y_n)]$ which goes to zero by the Dominated convergence theorem (since $|L(X_n) - L(X)|$ goes to zero in probability, and is bounded by the constant $2 \sup |L(s)|$).

Remark Skorokhod proved the (stronger looking) converse. If $\mu_n \xrightarrow{d} \mu$, then one can always construct a probability space and random variables X_n, X such that $PX_n^{-1} = \mu_n$ and $PX^{-1} = \mu$ and such that $X_n \xrightarrow{a.s.} X$ w.r.t. the measure *P*. Sometimes we just write $X_n \xrightarrow{d} X$, but the statement is always about the distributions of X_n and of *X* and has nothing to do with the random variables themselves.

Example Let X_i be i.i.d. real-valued random variables with zero mean and unit variance and let $S_n = X_1 + \ldots + X_n$. The Central Limit Theorem says that $\frac{S_n}{\sqrt{n}} \stackrel{d}{\to} N(0,1)$. Here is how to prove it using Skorokhod embedding.

By Skorokhod embedding theorem, we can find *B*, a 1-dim BM and stopping times (perhaps w.r.t. an enhanced filtration) $0 = \tau_0 \le \tau_1 \le \tau_2 \le \ldots$ such that

(*i*) $(\tau_k - \tau_{k-1}, B(\tau_k) - B(\tau_{k-1}))$ are i.i.d. (*ii*) $(B(\tau_k))_k \stackrel{d}{=} (S_k)_k$ (*iii*) $\mathbf{E}[\tau_k - \tau_{k-1}] = 1$.

Let $W_n(t) = \frac{B(nt)}{\sqrt{n}}$ so that $\frac{S_n}{\sqrt{n}} \stackrel{d}{=} \frac{B(\tau_n)}{\sqrt{n}} = W_n\left(\frac{\tau_n}{n}\right)$. By the proposition above, it suffices to show that $W_n\left(\frac{\tau_n}{n}\right) - W_n(1) \stackrel{P}{\to} 0$ (take $X_n = W_n\left(\frac{\tau_n}{n}\right) \stackrel{d}{=} \frac{S_n}{\sqrt{n}}$ and $Y_n = W_n(1) \stackrel{d}{=} N(0,1)$. Fix any $\varepsilon > 0$. Then for any $0 < \delta < 1$,

$$\mathbf{P}\left[|W_n\left(\frac{\tau_n}{n}\right) - W_n(1)| \ge \varepsilon\right] \le \mathbf{P}\left[\sup_{\substack{s,t \in [0,2]\\|s-t| \le \delta}} |W_n(t) - W_n(s)| > \varepsilon\right] + \mathbf{P}\left[\left|\frac{\tau_n}{n} - 1\right| > \delta\right].$$

The first term does not depend on *n* and goes to zero as $\delta \downarrow 0$. For fixed $\delta > 0$, by WLLN the second term goes to zero as $n \to \infty$. Thus, by first letting $n \to \infty$ and then $\delta \to 0$, we deduce that $|W_n(\frac{\tau_n}{n}) - W_n(1)| \xrightarrow{P} 0$.